
Policy gradient methods with model predictive
control applied to ball bouncing

Paul Kulchenko
Department of Computer Science

and Engineering
University of Washington, Seattle, WA

Email: paul@kulchenko.com

Emanuel Todorov
Departments of Applied Mathematics and

Computer Science and Engineering
University of Washington, Seattle, WA

Email: todorov@cs.washington.edu

Abstract—We propose a policy parameterization well suited
for control problems that involve both continuous dynamics and
discrete events. The key idea is to parameterize the policy using
a scalar function defined on the subset of states corresponding to
discrete events. This function approximates the cost-to-go with
respect to some master cost. Once the function is given, we define
the policy using model-predictive control (MPC) extended to a
first-exit setting: instead of optimizing to a predefined horizon,
we optimize up to the next discrete event (ball-paddle contact).
The proposed parameterization relies on numerical optimization
to obtain the actual policy as opposed to evaluating an explicit
formula, and has the advantage of being more compact and
focusing on the aspects of the task. Once the policy has been
defined, we simulate it using ”quenched” noise, and improve the
parameters of the function via gradient descent on the resulting
average master cost. We apply this method to the task of two-ball
juggling on the same paddle and analyze its performance using
a simulated model of the system.

I. INTRODUCTION

Policy gradient methods in Reinforcement Learning provide
a systematic way to improve the performance of a parameter-
ized policy [1]–[4]. The choice of parameterization is often
crucial, and yet we have no general way of constructing good
parameterizations.

In this paper we propose a policy parameterization that is
well-suited for control problems involving both continuous
dynamics and discrete events. The specific example we focus
on is robotic ball bouncing, although the same methodology
could be applied to more complex tasks such as walking
or object manipulation. The discrete events correspond to
contacts.

The key idea is to parameterize the policy using a scalar
function h(x,w) defined on the subset of states x corre-
sponding to discrete events. Note that we will not treat
general hybrid systems with both continuous and discrete state
variables. Instead we focus on more restricted hybrid systems
whose state is fully captured by the continuous variables
(e.g. position and velocity of the ball and the paddle). Event
states correspond to some sub-manifold in this continuous state
space.

Our function h(x,w) will approximate the cost-to-go with
respect to some master cost `(x, u) which defines an infinite-
horizon optimal control problem. Once h(x,w) is given, we
will define the policy using model-predictive control (MPC) as

in our recent work [5]. The idea behind MPC is as follows: at
each time step of the control loop, compute an optimal state-
control trajectory starting at the current state and reaching
up to some horizon into the future, send the first control
to the plant, and then repeat the procedure at the next time
step. In our recent work we extended this idea to a first-exit
setting: instead of optimizing up to a predefined horizon, we
optimize up to the next discrete event (ball-paddle contact).
The function h(x,w) is used as a final cost incurred at the
event/contact state, while the function `(x, u) is the running
cost for the MPC trajectory optimization problem. In this way,
the function h(x,w) is defined over contact states only, and yet
it parameterizes the policy for all states. This parameterization
is implicit: it relies on numerical optimization to obtain the
actual policy, as opposed to evaluating an explicit formula (as
is usually done in policy gradient methods). The advantage of
such a policy parameterization is that it is more compact and
focuses on the key aspects of the task; indeed in most hybrid
systems the discrete dynamics are key.

The algorithm we propose is as follows. Given the current
parameters w of the final cost h(x,w), simulate the policy
resulting from our first-exit MPC method [5] starting from
a number of predefined initial states, and average the master
cost `(x, u) along the state-control trajectories. This average is
the performance L(w) of the current set of parameters. Now
improve w using gradient descent on L(w); here we use the
BFGS (Broyden–Fletcher–Goldfarb–Shanno) method. While
many recent studies have estimated the gradient from a single
long stochastic simulation, we have opted for shorter pseudo-
deterministic simulation (using the same noise sequence for
every w), letting the numerical optimizer compute gradients
via finite differences. It is not clear which approach is better,
and anyway the issue of how the gradient is computed is
orthogonal to the main idea of the paper - which is the specific
parameterization via MPC. Note that most policy gradient
results assume a linear parameterization of the policy, while
the implicit parameterization we use here is generally non-
linear.

The choice of ”features” for the function h(x,w) is still
important and problem-specific. Yet this choice is now sim-
plified because discrete event states tend to be more intuitive.
In the ball bouncing example, the features are chosen so as to

encode what is a good way to hit a ball (see below).
While ball-bouncing has not been studied in the context

of policy gradient methods, it has nevertheless received con-
siderable attention [6]–[9]. Most of that work has focused
on analysis of (usually passive) stability. Indeed one of the
more remarkable findings has been that passive stability in
the vertical direction requires hitting the ball with negative
acceleration, and that humans exploit this strategy [8], in
general agreement with the idea that the brain optimizes motor
behavior [10]. Our work puts the emphasis on intelligent
feedback control rather than simple solutions. What we gain
is the ability to recover from a wide range of perturbations,
change the task objectives on the fly (e.g. the desired height
of the bounce), and perform more complex tasks such as
bouncing two balls with a single (hard) paddle.

We describe our general control methodology in the next
section, and specialize it to ball-bouncing in subsequent sec-
tions. The details of first-exit model predictive control are
covered in more depth in our earlier work [5], and are also
summarized here for convenience.

II. FIRST-EXIT MODEL PREDICTIVE CONTROL

MPC is normally applied to tasks that continue indefinitely.
Thus we formalize the task as an infinite-horizon average-cost
stochastic optimal control problem, with dynamics given by
the transition probability distribution p (x′|x, u). Here x is the
current state, u the current control, and x′ the resulting next
state. The states and controls can be discrete or continuous.
Let ` (x, u) be the immediate cost for being in state x and
choosing control u. It is known that the differential optimal
cost-to-go function ṽ (x) satisfies the Bellman equation

c+ ṽ (x) = min
u

{
` (x, u) + Ex′∼p(·|x,u)ṽ (x

′)
}

(1)

where c is the average cost per step. The solution is unique
under suitable ergodicity assumptions.

Now consider a first-exit stochastic optimal control problem
with the same dynamics p, immediate cost ̂̀(x, u), and final
cost h (x) defined on some subset T of terminal states. In
such problems the total cost-to-go v is finite and satisfies the
Bellman equation

v (x) = min
u

{̂̀(x, u) + Ex′∼p(·|x,u)v (x
′)
}

(2)

for x /∈ T , and v (x) = h (x) for x ∈ T .
When ̂̀(x, u) = ` (x, u) − c the two Bellman equations

are identical and so v (x) = ṽ (x). Thus we can find the
optimal solution to an infinite-horizon average-cost problem
by solving a first-exit problem up to some set of terminal
states T , and at the terminal states applying a final cost h
equal to the differential cost-to-go ṽ for the infinite-horizon
problem. Of course if we knew ṽ the original problem would
already be solved and we would gain nothing from the first-
exit reformulation. However, if we only have an approximation
to ṽ, choosing greedy actions with respect to ṽ is likely to be
worse than solving the above first-exit problem. While there is

no proof that such a procedure will improve the control law,
it usually does in practice.

There is an important difference between the approach we
used and the way MPC has been used in the past. Traditionally
MPC solves (in real time) a finite-horizon problem rather than
a first-exit problem. That is, at each time step it computes an
optimal trajectory extending N steps into the future, where
N is predefined. The final state of such a trajectory can be
any state; therefore the final cost h needs to be defined every-
where. In contrast, our method always computes a trajectory
terminating at a state in T , and so our final cost only needs to
be defined for x ∈ T . This is advantageous for two reasons:
(1) guessing/approximating ṽ is easier if we have to do it at
only a subset of all states; (2) in the case of contact dynamics,
if we define T as the set of states where contacts occur, then
the real-time optimization does not need to deal with contact
discontinuities; instead the effects of such discontinuities are
incorporated in h.

One way to specify h is to use domain-specific heuristics
as we demonstrated in our earlier work [5]. In the case of
ball-bouncing, our formulation of MPC makes it particularly
easy to come up with obvious heuristics – which basically
define what is a good way to hit a ball. In other tasks such
as walking, the heuristics may define what is a good way to
place a foot on the ground.

Another approach, which is the main focus of this paper,
is policy gradient. The vector w defines a function h, which
in turn defines an MPC control law, which in turn can
be evaluated empirically (through sampling) on the original
infinite-horizon problem. In this way we can define the aver-
age empirical cost L (w) for every possible w, and perform
gradient descent on it.

III. APPLICATION TO BALL-BOUNCING

We have applied this method to the challenging problem
of juggling two table tennis balls on one paddle. The paddle
moves in three dimensions inside a workspace defined
by a cylinder (with a center of the cylinder positioned
at [0 0 0]T) and has a fixed orientation (always stays in
the horizontal plane). Let px, py , and pz be positions of
the paddle in their respective coordinates; bx, by , and bz
be positions of one ball and ox, oy , and oz be positions
of the other ball. The state has 18 dimensions: x =[
px py pz ṗx ṗy ṗz bx by bz ḃx ḃy ḃz ox oy oz ȯx ȯy ȯz

]T
The dynamics are

ẋpp = xpv

ẋpv = u+ [0 0 -g]T

ẋbp = xbv

ẋbv = [0 0 -g]T − d‖xbv‖xbv

ẋop = xov

ẋov = [0 0 -g]T − d‖xov‖xov

where the state variables are xpp = [px py pz]
T , xpv =

[ṗx ṗy ṗz]
T , xbp = [bx by bz]

T , xbv =
[
ḃx ḃy ḃz

]T
, xop =

[ox oy oz]
T , xov = [ȯx ȯy ȯz]

T , g is the acceleration due
to gravity, and d is the coefficient calculated based on the
drag coefficient and other parameters. The goal is to juggle
two balls given their desired velocity after the contact while
keeping the paddle in the workspace (close to the center of the
workspace). The control objective is to find the control u(t)
that minimizes the performance index for the MPC solver

J0 = h(x(T)) +

T−1∑
t=1

`(x (t) ,u (t)) (3)

` (x,u) = ‖u‖2 + ww‖pxy‖2 + wz (pz − ptarget)
2 (4)

+ wp‖pxy − bxy‖2

h(x) = wv‖xcontact
bv − vtarget‖2 + ww‖pxy‖2 (5)

+ wp‖pxy − bxy‖2

+

18∑
i=1

wixi +

18∑
i=1

18∑
j=1

wijxixj

where xcontact
bv is the ball velocity after the contact, vtarget

is the target ball velocity after the contact, ptarget is the target
z coordinate for the paddle, wv is a weight on the velocity
error, ww is the weight on the distance from the middle of
the workspace in the xy coordinates, wz is the weight on the
distance from ptarget, wp is the weight on the distance from
the ball projection on the xy-plane, wi and wij are parameters
for linear and quadratic terms. All w’s are assembled into one
parameter vector, which will be optimized later using gradient
descent. We used a time step of 10msec and set T to 1sec.

A. Master cost

The master cost ` (x, u) is defined differently for contact
and non-contact states. For the contact states it is set to track
the z position of the paddle in the workspace and the position
of the ball relative to the paddle in the following way

` (x,u) = mz ((pz − ptarget) /0.08)
8 (6)

+mp (‖pxy − bxy‖/0.05)8

For all other (non-contact) states, it is defined similarly to
the immediate cost

` (x,u) = ‖u‖2 + ww‖pxy‖2 + wz (pz − ptarget)
2 (7)

+ wp‖pxy − bxy‖2

The performance of the current set of parameters L(w) is
calculated as the average of the master cost ` (x, u) along the
state-control trajectories. We also added to L(w) regularization
terms of the form

∑18
i=1|wi|+

∑18
i=1

∑18
j=1|wij | to encourage

parameter values to be sparse. The master cost parameters
mz and mp have been set both to 100. The parameters for the
immediate cost (ww, wz , and wp) have been set to 100, 36000,
and 100 respectively and not changed during the optimization.

Notice that for the two-ball juggling the master cost does not
explicitly track whether trajectories of two balls intersect or
get too close. This is left to be handled by the return velocity

calculation (as described in Section Target identification). We
are considering implementing explicit tracking of trajectories
as one of the items for future work.

B. Target identification

As noted by Schaal and Atkeson [6], ”In order to juggle
more than one ball, the balls must travel on distinct tra-
jectories, and they should travel for a rather long time to
facilitate the coordination of the other balls.” In the one-
ball configuration the return velocity is calculated based on
the desired height and the target position (set to the center
of the workspace), whereas in the two-ball configuration the
target position is calculated based on where the other ball is
expected to intersect z = 0 plane according to the formula:
pt = p2 − dtargetp2/‖p2‖, where p2 is the position of the
other ball, dtarget is a desired distance between the balls, and
pt is the target position for the ball at the contact. The target
height is calculated in such a way as to have one ball at the
apex when the other ball is at contact.

C. System design

The system we simulated has three main components: Delta
Haptic robot [13] with three degrees of freedom that has a
regular table tennis paddle mounted on its effector; high-speed
Vicon Bonita cameras, and table tennis balls covered with a
reflective tape to enable tracking. One thing to note is that
the size of the workspace is quite small—a cylinder 0.36m
in diameter and 0.30m in height—which contributed to the
challenge of finding good solutions. We used this system to
run experiments on one- and two-ball bouncing and collect
data [5]. In this work we are using these data to construct a
good model and doing everything in simulation (leaving the
application of gradient descent to the real system for future
work).

The simulation engine was implemented in MATLAB and
allowed to simulate a sequence of one- and two-ball bounces
using the velocity noise model (as described in Section Noise
model estimation). All parameters in the simulator were the
same as used with the real system. The values of coefficients
in the model–the coefficient of restitution and the drag–have
been estimated from the experimental data collected on the
real system.

Gradient descent was based on the BFGS Quasi-Newton
method1 with a cubic line search procedure and finite-
difference gradient estimation (as implemented by the
fminunc function in MATLAB).

D. Noise model estimation

As the performance of the system is significantly affected
by how the ball bounces off the paddle, to reproduce the same
effects in simulation we estimated the noise model of the
velocity after the contact based on data from the real robot.

1BFGS method is a method for solving nonlinear optimization problems
that belongs to a class of hill-climbing optimization techniques that find a
stationary point of a twice differentiable function. It is using a generalization
of a secant method of finding the root of the first derivative (the cubic line
search has been used for this optimization).

As Reist and D’Andrea [11] observed, ”the main source of
noise in the measured impact times and locations are stochastic
deviations of the impact parameters, i.e. ball roundness and
CR”; they also specifically called out table tennis balls as
generating too much noise in the horizontal degrees of freedom
at contact. In our case both of the aspects—ball roundness
and the coefficient of restitution—have been affected by the
reflective tape we applied to the table tennis balls, which
introduced more noise for the system to deal with, even though
we took extra care in applying the tape.

To estimate the noise model we applied markers to the
paddle attached to the robot and then measured positions and
velocity of the paddle and the ball with the highest frequency
available from the Vicon system (240Hz) while juggling one
ball. Because of the discretization effect, the actual point of
contact may happen somewhere between the measurements.
We calculated it by extrapolating trajectories using data from
before and after the contact measurements and finding the
point of their intersection (using z coordinates). We then
estimated velocities and calculated how much the velocity after
bounce deviated from the velocity predicted by the model.
The errors in each dimension are shown in Fig. 1; during the
simulation we used samples from these distributions to model
noise for each bounce.

(a) Noise estimation x (b) Noise estimation y

(c) Noise estimation z

Fig. 1. Ball velocity after contact noise estimation and fit Gaussians for each
of the dimensions.

IV. EXPERIMENTAL RESULTS

In this section we present and discuss experimental results
from the tuning of the cost function, using our MATLAB sim-
ulator. The focus of these experiments has been on validating
that the policy gradient method can improve performance of
the system comparing to the hand-crafted cost function and
on evaluating the difference.

The goal was not simply to improve the cost function, but
also improve it in a way that produces good results with
juggling one and two balls and allows to juggle with a small

limit on the value of the control signal. As we observed in
experiments on human subjects (not covered in this paper) and
in the published research [8] the acceleration applied by human
subjects is significantly lower than the acceleration applied by
the robot. However, the current values of the parameters used
in the cost function didn’t allow to simply reduce the value, as
it generated not acceptable solutions. So, the second goal for
this optimization was to find a set of parameters that supported
robust juggling using a low limit on the control signal (paddle
acceleration).

For each bounce the velocity after contact was adjusted
based on the noise model (as described in Section Noise
model estimation). We applied the same sequence of random
values to calculate velocity noise to make sure the optimization
algorithm is using a common history for all calculated solution
costs. A completely different sequence of values (with a
different starting value and different duration) was used to
test parameter values and to plot and analyze the results. We
used 2.8s sequences for optimization (this allowed for about
10 contacts) and 24s for performance assessment and data
analysis.

A. Performance with hand-crafted parameters

In the analysis of the results our focus was mostly on
two-ball bouncing as it presented a much more difficult
optimization problem than one-ball bouncing, which was
already demonstrated to be robust enough [5]. For each of the
conditions we looked at consistency of the interval between
bounces and the height of each bounce as well as the positions
of each bounce on the paddle (relative to its center). Fig.
2 shows the results for the initial values of the parameters.
As can be seen from the figure, the system demonstrates
sufficiently good performance; this assessment is supported
by the fact that the real system using the same parameters is
indeed capable of bouncing two balls, although only for about
25 bounces.

B. Improving performance using policy gradient

As the first step we used the parameter values that were
designed manually and added linear and quadratic terms (18
+ 18*18), with the total number of parameters being 345
(including 3 existing parameters). However, it didn’t produce
expected results as the algorithm we used could not demon-
strate any significant improvement. Those improvements that
were demonstrated looked like a case of overfitting as they
didn’t generalize well to other sequences of random noise. We
attributed this result to the inherent challenge of using finite
difference methods with parameters w having different order
of magnitude [12].

To address this issue, we changed the approach and looked
at first improving those parameters that were used in the hand-
crafted cost function (as described in Section Application to
ball-bouncing) and only then adding more parameters. This
approach worked much better; Fig 3 shows how a better set
of parameters was learned during one of the optimization runs
(and a corresponding reduction in the master cost).

(a) Time between contacts (b) Maximum height distribution

(c) Contacts on paddle (d) Master cost for each contact

Fig. 2. Results for initial parameters with average cost 5.239; parameters
set to [wp wv ww] = [10000 10000 1000] with |umax| ≤ 40.

Fig. 3. Improvement in the master cost during optimization starting from
initial parameter values [wp wv ww] = [10000 10000 1000].

The system performed well with the parameters optimized,
which allowed us to reduce the control limit to 25m/s2. Fig.
4 shows the trajectories generated in one of the test runs and
Fig. 5 shows the results from the same run. While it may not
look like a significant improvement, it needs to be considered
in the context of the system not being able to previously juggle
at all with 25m/s2 limit and struggling with 30m/s2 limit.

Fig. 4. Trajectories (z-coordinate) of the paddle (blue dashed)
and the balls (red solid and black dotted) for [wp wv ww] =
[9331.227812 336.372829 5758.953800] with |umax| ≤ 25.

After we added linear and quadratic parameters and ran

(a) Time between contacts (b) Maximum height distribution

(c) Contacts on paddle (d) Master cost for each contact

Fig. 5. Results for 3 parameters with average cost 4.503; parameters set to
[wp wv ww] = [9331.227812 336.372829 5758.953800] with |umax| ≤
25.

TABLE I
PARAMETER VALUES FOR LINEAR AND QUADRATIC TERMS

px py pz ṗx ṗy ṗz bx by bz ḃx ḃy ḃz
linear 0 0 + 0 0 0 0 0 0 0 0 0

px − − − + − − 0 0 0 0 0 0
py − − + + + − 0 0 0 0 0 0
pz + − − + − + + + − + + −
ṗx − − − + − − 0 0 0 0 0 0
ṗy − − + + + + 0 0 0 0 0 0
ṗz + − + + − + 0 0 0 0 0 0
bx 0 0 0 0 0 0 0 0 0 0 0 0
by 0 0 0 0 0 0 0 0 0 0 0 0
bz 0 0 0 0 0 0 0 0 0 0 0 0

ḃx 0 0 0 0 0 0 0 0 0 0 0 0

ḃy 0 0 0 0 0 0 0 0 0 0 0 0

ḃz 0 0 0 0 0 0 0 0 0 0 0 0

them through the optimization process (using the fminunc
function with default options), it turned out that only some of
the terms have non-zero values. As described in Section Master
cost, we added the absolute values of the weights to the per-
formance criterion, which encourages sparse solutions. Table I
shows that only paddle-related (cross-)terms had impact on the
master cost (+ and − indicate non-zero values; only showing
first 12 out of total 18 as the rest are zeros). As the result
of this analysis, we only used first three linear terms and 36
quadratic terms for paddle position and velocity values.

First several runs of the optimization algorithm on the initial
set of parameters provided important insight that, counter-
intuitively, reducing the weight on the velocity after contact
error not only didn’t degrade the performance, but actually
noticeably improved it. Unfortunately, this set of parameters
didn’t allow for much of further improvement, but using this
insight and our domain knowledge, we adjusted the set of
the initial values and used the simulator to learn a better
set. Fig. 6 shows the improvement of the master cost during
the optimization for one set of initial values and Fig. 7
demonstrates results after this optimization.

Fig. 6. Improvement in the master cost during optimization starting from
initial parameter values [wp wv ww] = [10000 100 1000].

It is worth noting that these results compare well with the
earlier results in terms of consistency of contact timing and
position on the paddle even though we lowered the limit to
21m/s2 and the original results (Fig. 2) were taken at 40m/s2,
as the system was struggling even at 30m/s2, which is why
we were interested in varying the limit in this optimization.

(a) Time between contacts (b) Maximum height distribution

(c) Contacts on paddle (d) Master cost for each contact

Fig. 7. Results for 3 parameters with average cost 5.927; parameters set to
[wp wv ww] = [9999.980910 74.581537 1000.174549] with |umax| ≤
21.

After getting to the desired range of 20 − 22m/s2 (from
40m/s2 it was originally set to) we added other parameters
(linear and quadratic terms) and varied parameters of the
gradient estimator looking for further improvements. We used
the result of optimization shown in Fig. 6 and extended the
number of parameters to 42 (by adding 3 linear and 36
quadratic terms). As the result of this optimization, we were
able to get a slightly better master cost, while keeping the the
limit on the control signal set to 21m/s2, which is the best
result we have been able to demonstrate so far. Fig. 8 shows
the results from the test run for these parameter values. Fig. 9
shows the trajectories of the paddle and two balls. While the
results shown in Fig. 7 and Fig. 8 look similar, the average
cost with the extended set of parameters has been reduced by
almost 8% (from 5.927 to 5.470).

(a) Time between contacts (b) Maximum height distribution

(c) Contacts on paddle (d) Master cost for each contact

Fig. 8. Results for 42 parameters with average cost 5.470; parameters
set to [wp wv ww ...] = [9999.981038 74.557687 1000.174682 ...] with
|umax| ≤ 21.

Fig. 9. Trajectories (z-coordinate) of the paddle (blue dashed) and the balls
(red solid and black dotted).

V. CONCLUSION

In this work we implemented and tested tuning of the final
cost for a first-exit MPC problem of juggling two balls using
policy gradient with a parametric function approximator. We
simulated the system that mimics a real robot with significant
physical constraints (a small workspace and no tilt control) and
were able to robustly bounce two balls on the same paddle in
simulation using a noise model inferred from real data.

It should be noted that the successful application of policy
gradient methods here required some domain insight, and
was interleaved with improving the manual design rather than
being applied once ”off-the-shelf”. We believe this is because
we are solving a very hard problem, involving an inherently
unstable system where the smallest error leads to failure.
The new method is likely to work off-the-shelf on simpler
problems, and provide significant benefits by combining the
advantages of model-predictive control and policy gradient
methods.

We are pursuing extending the work that has been done
so far in several directions: (1) testing the performance on
the real robot and (2) tuning the final cost of the solution

using approximate policy iteration. This approach relies on
the fact that at the optimal solution, the final cost h coincides
with the optimal differential cost-to-go ṽ for the infinite-
horizon problem. Thus h can be improved in the following
way. For a set of starting states in T , run the MPC control
law corresponding to the current h (x;w), and obtain learning
targets for ṽ (x) on x ∈ T , using Temporal Difference learning
for example. Then adapt the parameters w so that h (x;w) gets
closer to these learning targets, and iterate.

We also plan to do a comparison with human subjects
to explore how the behavior of the robot is different from
humans on similar tasks and to bring the cost model closer
to the models that humans may be using. We expect that the
behavior of the system running with the adjusted parameters
will more closely resemble the behavior of human subjects
than the current behavior and we plan to confirm this in
future experiments. These comparisons with human subjects
will hopefully suggest additional improvements in our control
algorithm.

ACKNOWLEDGMENT

This work was supported by the US National Science
Foundation.

REFERENCES

[1] J. Bagnell and J. Schneider. Covariant policy search. In International
Joint Conference on Artificial Intelligence, 2003.

[2] S. Kakade. A natural policy gradient. In Advances in Neural Information
Processing Systems, 2002.

[3] J. Peters and S. Schaal. Natural actor-critic. Neurocomputing,
71:11801190, 2008.

[4] R. Sutton, D. Mcallester, S. Singh, and Y. Mansour. Policy gradient
methods for reinforcement learning with function approximation. In
Advances in Neural Information Processing Systems, 2000.

[5] P. Kulchenko and E. Todorov (2011). First-exit model predictive control
of fast discontinuous dynamics: Application to ball bouncing. To appear
in 2011 IEEE International Conference on Robotics and Automation

[6] S. Schaal and C. G. Atkeson (1993). Open Loop Stable Control Strategies
for Robot Juggling. In proceedings of the 1993 IEEE international
conference on Robotics and Automation

[7] A. Rizzi and D. Koditschek (1994). Further progress in robot juggling:
Solvable mirror laws. In proceedings of the 1994 IEEE international
conference on Robotics and Automation

[8] D. Sternad, M. Duarte, H. Katsumata and S. Schaal (2000). Dynamics of
bouncing ball in human performance. Physical Review E, vol 63

[9] R. Ronsse, K. Wei and D. Sternad (2010). Optimal control of a hybrid
rhythmic-discrete task: The bouncing ball revisited. Journal of Neuro-
physiology 104: 2484-2493

[10] E. Todorov (2004). Optimality principles in sensorimotor control. Nature
Neuroscience 7: 907-915

[11] P. Reist and R. D’Andrea (2009). Bouncing an Unconstrained Ball in
Three Dimensions with a Blind Juggling Robot. In proceedings of the
2009 IEEE international conference on Robotics and Automation

[12] J. Peters and S. Schaal (2006). Policy Gradient Methods for Robotics. In
proceedings of the 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems

[13] S. Grange, F. Conti, P. Helmer, P. Rouiller, C. Baur. (2001) The Delta
Haptic Device. In proceedings of the Eurohaptics’01

